Detecting Anomalies in Sequential Data with Higher-order Networks

نویسندگان

  • Jian Xu
  • Mandana Saebi
  • Bruno Ribeiro
  • Lance M. Kaplan
  • Nitesh V. Chawla
چکیده

Amajor branch of anomaly detection methods rely on dynamic networks: raw sequential data is first converted to a series of networks, then critical change points are identified in the evolving network structure. However, existing approaches use the first-order network (FON) to represent the underlying raw data, which may lose important higher-order sequence patterns, making higher-order anomalies undetectable in subsequent analysis. By replacing FON with higher-order network (HONs), we show that existing anomaly detection algorithms can better capture higher-order anomalies that may otherwise be ignored. We show that the existing HON construction algorithm cannot be used for the anomaly detection task due to the extra parameters and poor scalability; we introduce a parameter-free algorithm that constructs HON in big data sets. Using a large-scale synthetic data set with 11 billion web clickstreams, we demonstrate how the proposed method can capture variable orders of anomalies. Using a real-world taxi trajectory data, we show how the proposed method amplifies higher-order anomaly signals. Finally, we provide complexity analysis and benchmarking to show how one can incorporating higher-order dependencies with a small overhead.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Detecting Bot Networks Based On HTTP And TLS Traffic Analysis

Abstract— Bot networks are a serious threat to cyber security, whose destructive behavior affects network performance directly. Detecting of infected HTTP communications is a big challenge because infected HTTP connections are clearly merged with other types of HTTP traffic. Cybercriminals prefer to use the web as a communication environment to launch application layer attacks and secretly enga...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.09658  شماره 

صفحات  -

تاریخ انتشار 2017